Today’s Solutions: February 03, 2026

From spreading crushed rocks in forests and farmlands to constructing green buildings with materials that suck carbon up out of the atmosphere, scientists are hard at work developing innovative solutions that reduce our greenhouse gas emissions.

More recently, a team of scientists from Washington University in St. Louis investigated the potential of microorganisms to help us tackle climate change. The study involved shedding new light on electricity-eating bacteria that may help enhance our oceans’ ability to absorb CO2.

The peculiar electricity-munching skills of these microbes — known as photoferrotrophs — were previously thought to be almost exclusive to freshwater bacteria, but the recent study shows that they may be common in marine bacteria too.

“These microbes are fixing and sequestering carbon dioxide and they can both ‘eat’ electricity and perform photoferrotrophy,” says study leader Arpita Bose. “Photoferrotrophs use soluble iron as an electron source for photosynthesis while fixing carbon dioxide. Marine environments are great places for them because they are rich in many things they need.”

In their study, the team investigated the way the bacteria consumes electrons and discovered a previously unknown electron-transfer protein that appears to be key in the process. While in a lab, the bacteria were able to harvest electrons directly from an electricity source. In the wild, they likely harvest electrons through rust and other iron minerals that are abundant in marine sediments.

According to Bose, because these bacteria are common and thriving in marine sediments, they may already hold a key for future engineered approaches to combating climate change.

“We need to understand the extent of carbon sequestration they can do in nature, as it might be a cryptic metabolism,” Bose says. “We could also potentiate it further—both for biotechnology and for the environment. This study is a big step, setting the stage for many future studies.”

Source study: ISME Journal — Photoferrotrophy and phototrophic extracellular electron uptake

Solutions News Source Print this article
More of Today's Solutions

Scientists develop unsinkable metal tubes using water-repelling technology

BY THE OPTIMIST DAILY EDITORIAL TEAM Engineers at the University of Rochester developed a way to make ordinary aluminum unsinkable even when it’s punctured, submerged, ...

Read More

8 night sky events to catch this February, from a planetary parade to the Mil...

BY THE OPTIMIST DAILY EDITORIAL TEAM February may be the shortest month of the year, but it more than makes up for lost time ...

Read More

How magnesium improves immune cell capabilities

Magnesium is an essential mineral vital to many bodily functions including muscle contraction, nerve transmission, blood pressure, and immunity. Therefore, it makes sense that ...

Read More

How to help victims of California wildfires: a guide to supporting relief eff...

BY THE OPTIMIST DAILY EDITORIAL TEAM Wildfires have once again ravaged Los Angeles County, burning tens of thousands of acres, destroying thousands of structures, ...

Read More