Today’s Solutions: April 17, 2024

E-waste is one of the most rapidly growing and toxic waste streams in the world today, but scientists at the Nanyang Technological University (NTU) in Singapore have come up with a partial solution by creating biodegradable batteries that can actually be buried in soil once they’ve reached the end of their lives.

The batteries are paper-thin and are made from biodegradable zinc. The team believes they could one day become an environmentally friendly option for powering smartphones and flexible wearable electronic devices.

The zinc batteries are made of electrodes that are screen-printed on both sides of a piece of cellulose paper that’s been reinforced with hydrogel. The electrodes allow electrical currents to leave and enter the battery. Once the battery runs out of power, all the user must do is bury it in the soil. After a month, the battery will have broken down completely.

So far, the team has demonstrated how a battery consisting of a small square of printed paper (4cm by 4cm) can power a small electric fan for at least 45 minutes, and that bending or twisting the battery does not interrupt the power supply. In another experiment using the same-sized paper battery, the scientists were able to show that the battery continues to work, even if part of it is cut away.

The scientists believe that their paper-thin battery could be a good option for flexible electronics like foldable smartphones or biomedical sensors for health monitoring.

“Traditional batteries come in a variety of models and sizes and choosing the right type for your device could be a cumbersome process,” says Professor Fan Hongjin, the study’s co-lead author. “Through our study, we showed a simpler, cheaper way of manufacturing batteries, by developing a single large piece of battery that can be cut to desired shapes and sizes without loss of efficiency. These features make our paper batteries ideal for integration in the sorts of flexible electronics that are gradually being developed.”

On top of being non-toxic, the newly developed battery also has the added benefits of “avoiding the packaging layers,” which “also enables [the] battery to store a higher amount of energy, and thus power, within a smaller system,” explains Assistant Professor Lee Seok Woo, another co-lead author of the study.

Solutions News Source Print this article
More of Today's Solutions

Solar-powered solutions for Gaza’s water crisis illuminate a path throu...

In the heart of the Gaza Strip, amid a humanitarian catastrophe exacerbated by violence, war, and blockades, a ray of light shines via the ...

Read More

The science behind birds’ singing in their sleep

In the complex world of avian behavior, researchers have discovered a fascinating phenomenon: birds sing while sleeping. Scientists observed muscular contractions in a bird's ...

Read More

The history of square dancing in America—part I of True American

The Optimist Daily is taking a journey into ideas and symbols that shape the world with our our mini-series True American. Our first episode ...

Read More

AI makes wind farms safer for birds— a win for green energy expansion

For years, concerns over the potential harm wind turbines might cause to birds have been an obstacle to the expansion of wind energy. However, ...

Read More