Today’s Solutions: August 11, 2022

Octopuses’ are some of the intelligent animals inhabiting our diverse planet. Their extensive neurological system is made up of 500 million neurons, similar to that of a dog. But unlike a dog where most of these neurons are located in their brain, over two-thirds of octopuses’ can be found in their arms and bodies.

This unique spread of neurons allows for an incredibly high level of intelligence, being capable of using tools, problem-solving, and extremely behaviourally adaptable. The animals are also masters of camouflage, having the ability to modify the color and texture of the skin.

A new international study has found something remarkable about the octopus brain, it has incredible similarities to our own. Research shows that both the human and octopus brains contain the same active transposons or “jumping genes.” These make up around 45 percent of the human genome and have the ability to cut and paste themselves many times throughout, shuffling or duplicating genetic material in their path.

Jumping genes are mostly harmless, however, if they by chance land in the right place this can shape the path of evolution of an organism. Previous studies have shown that it is likely these genes are what caused the size of the human brain to expand so rapidly and reshuffle our genetics in favor of intelligence. These genes are particularly active in the hippocampus, the area of the brain responsible for learning and memory.

The story of octopus jumping genes seems to be similar, with genomic sequencing revealing a rich landscape of transposons. “I literally jumped on the chair when, under the microscope, I saw a very strong signal of activity of this element in the vertical lobe, the structure of the brain which in the octopus is the seat of learning and cognitive abilities, just like the hippocampus in humans,” tells Giovanna Ponte who worked on the project.

This discovery could help us understand the fascinating secrets of octopus intelligence. As humans and octopuses are evolutionarily distant, it also strengthens theories of the cause of cognitive intelligence. Gaining a deeper understanding of these mind-shaping mechanisms can give clues into the neurological conditions these jumping genes influence, such as Parkinson’s and Alzheimer’s disease.

Source study: BMC BiologyIdentification of LINE retrotransposons and long non-coding RNAs expressed in the octopus brain

Solutions News Source Print this article
More of Today's Solutions

VR tech helps international team of surgeons separate twins with fused brains

In miraculous medical news, virtual reality (VR) has helped surgeons successfully separate conjoined twins with craniopagus. Craniopagus describes a condition where twins are born with fused brains. It is an incredibly rare condition, and—this probably ... Read More

Could “antivitamins” be the cure to antibiotic resistance?

The first naturally-occurring bacteria killer, penicillin, was discovered nearly a century ago and with it came the advent of a new class of medicines: antibiotics. Bacterial infections were the leading cause of death at the ... Read More

Rare yellow penguin is mystifying biologists

In December 2019, Belgian wildlife photographer Yves Adams had an exceptional stroke of luck while on a remote island in South Georgia. Adams was leading a two-month photography expedition through the South Atlantic and had ... Read More

This radio station plays ethereal ambient music made by trees

Silent tree activity, like photosynthesis and the absorption and evaporation of water, produces a small voltage in the leaves. In a bid to encourage people to think more carefully about their local tree canopy, sound ... Read More