Today’s Solutions: May 02, 2024

The science behind an important unexplained everyday occurrence in our world has finally been described. Called the “teapot effect,” it refers to an experience many of us have probably had: We go to pour a piping hot beverage out of a teapot too slowly, and end up with unwanted tea all over the table.

The history behind the phenomena

First described in 1956 by Israeli scientist Markus Reiner, scientists have actually studied the “teapot effect” for decades. When he emigrated to the US, Reiner became a pioneer of the science of flow behavior, or in more scientific terms ‘rheology.’

Since then, people have tried to precisely explain the physics behind the event, but the forces at play here are more complicated than you would think for a mere teapot! In 1999, researchers won the Ig-Nobel Prize for work on this topic, which is an award to annually celebrate unusual discoveries and progression.

Understanding the spillage

Finally, a team from the Vienna University of Technology has published a paper in the Journal of Fluid Mechanics explaining what is going on. The underside of the teapot, where there is a cutting edge, plays a key role. Here, drop formation happens and it always remains wet. The speed at which the tea is poured influences the size of the drop, and if this speed is lower than a force threshold, the tea dribbles down the side of the teapot.

“Although this is a very common and seemingly simple effect, it is remarkably difficult to explain it exactly within the framework of fluid mechanics,” said Bernhard Scheichl, one of the researchers to finally describe the occurrence. “We have now succeeded for the first time in providing a complete theoretical explanation of why this drop forms and why the underside of the edge always remains wetted.”

The exact forces and mathematics behind this concept are complicated, though the main idea is the interaction of forces between the flow of the liquid and the teapot spout. The key takeaway? It may seem counterintuitive but pour quickly to avoid a spill.

Source study: Journal of Fluid Mechanics – Developed liquid film passing a smoothed and wedge-shaped trailing edge: small-scale analysis and the ‘teapot effect’ at large Reynolds numbers

Solutions News Source Print this article
More of Today's Solutions

Making windows bird-friendly: a crash course on protecting our feathered friends

In 1990, Michael Mesure was on the way to a wildlife rehabilitation center. Among his passengers was a common yellowthroat, a colorful warbler that ...

Read More

Good old-fashioned printed text outshines screens for cognitive engagement in...

In today's digital landscape, the draw of screens is clear, especially among the youngest members of society. But, what does this switch-up mean for children's ...

Read More

6 feng shui tips to help you rediscover your creativity

Not all of us have jobs or passions that fall into a classically "creative" category, but you don't need to be a writer, singer, ...

Read More

New nasal spray treatment could help prevent Alzheimer’s

According to the World Health Organization, around 55 million people worldwide suffer from dementia. Although there’s currently no cure, researchers are unabatedly looking for ...

Read More