Today’s Solutions: December 18, 2025

Scientists from the University of Cambridge have created a cutting edge, jelly-like material that can withstand extreme force. The strong yet squishy hydrogel was designed to be able to handle the weight of an elephant standing on it!

The team designed this hydrogel to have a high water content of 80 percent, the rest of it being made up of a network of polymers. “At 80 percent water content, you’d think it would burst apart like a water balloon, but it doesn’t: it stays intact and withstands huge compressive forces,” said Scherman, Director of the University’s Melville Laboratory for Polymer Synthesis. “The properties of the hydrogel are seemingly at odds with each other.”

What makes this material interesting is its mechanical properties, with the polymers being held together with reversible on/off interactions. “In order to make materials with the mechanical properties we want, we use crosslinkers, where two molecules are joined through a chemical bond,” stated Dr. Zehuan Huang, the study’s first author. “We use reversible crosslinkers to make soft and stretchy hydrogels, but making a hard and compressible hydrogel is difficult and designing a material with these properties is completely counterintuitive.”

The study, published in Nature Materials, is the first time such force resistance has been subjected to such a soft material. Impressively, the jelly is converted to ultra-hard, shatterproof glass when compressed. “To the best of our knowledge, this is the first time that glass-like hydrogels have been made. We’re not just writing something new into the textbooks, which is really exciting, but we’re opening a new chapter in the area of high-performance soft materials,” said Huang.

Due to their tough and self-healing properties, hydrogels have a wide spanning range of applications; from robotics, biomedical use, bioelectronics, and more. The next step of this research is to collaborate with experts in these other fields, hopefully yielding some cutting edge technology on this front.

Source study: Nature MaterialsHighly compressible glass-like supramolecular polymer networks

Solutions News Source Print this article
More of Today's Solutions

New method uses sound waves to map soil health, stop famine, and restore farm...

BY THE OPTIMIST DAILY EDITORIAL TEAM Across the world, soil scientists are trading in their shovels for something unexpected: seismic sensors. In a breakthrough ...

Read More

This simple 15-minute mindset exercise can ease anxiety, science shows

BY THE OPTIMIST DAILY EDITORIAL TEAM A growing body of research is revealing how a short, simple activity that is done in just 15 ...

Read More

3 habits of the happiest people

Think of the happiest people you know. Do you find yourself often wondering what they are doing to maintain a general level of joy? ...

Read More

Changemakers of the week: GRuB and SparkNJ

Every day on the Optimist Daily, we report on solutions from around the world. Though we love solutions big and small, the ones that ...

Read More