Today’s Solutions: May 02, 2024

The possibilities of 3D printing seem to have no bound after scientists at the University of Minnesota managed to 3D print a human heart pump capable of beating on its own.

The pump is just 1.5 centimeters long, but the researchers believe the tiny organoid could have a huge impact on efforts to treat heart disease, the leading cause of death in the US. To create their heart pump, the UMN researchers started with human pluripotent stem cells, which are capable of developing into any kind of cell in the human body.

They added those cells to a bioink, then used a special 3D printer to shape their tiny organoid. That process took less than five minutes, according to their paper, published in the journal Circulation Research. (Though the research, of course, had taken years.)

Next, they waited two weeks for the stem cells to multiply. Once the cells reached the perfect density, the researchers prompted them to evolve into heart muscle cells. Less than a month later, the researchers’ heart pump was functioning.

“I couldn’t believe it when we looked at the dish in the lab and saw the whole thing contracting spontaneously and synchronously and able to move fluid,” lead researcher Brenda Ogle, head of UMN’s Department of Biomedical Engineering The key to their breakthrough, according to Ogle, was waiting until after printing to turn the cells into heart muscles — in previous attempts, they had developed the stem cells into heart cells before printing, and they never multiplied to the right density.

“After years of research, we were ready to give up and then two of my biomedical engineering Ph.D. students, Molly Kupfer and Wei-Han Lin, suggested we try printing the stem cells first,” she said. “We decided to give it one last try.”

The heart pump is nowhere near as complex as a fully developed human heart — it’s essentially two tubes leading into and out of a dual-chambered sac — but that’s enough to make it useful for research. “We now have a model to track and trace what is happening at the cell and molecular level in (a) pump structure that begins to approximate the human heart,” Ogle said. “We can introduce disease and damage to the model and then study the effects of medicines and other therapeutics.”

Solutions News Source Print this article
More of Today's Solutions

Making windows bird-friendly: a crash course on protecting our feathered friends

In 1990, Michael Mesure was on the way to a wildlife rehabilitation center. Among his passengers was a common yellowthroat, a colorful warbler that ...

Read More

Good old-fashioned printed text outshines screens for cognitive engagement in...

In today's digital landscape, the draw of screens is clear, especially among the youngest members of society. But, what does this switch-up mean for children's ...

Read More

6 feng shui tips to help you rediscover your creativity

Not all of us have jobs or passions that fall into a classically "creative" category, but you don't need to be a writer, singer, ...

Read More

New nasal spray treatment could help prevent Alzheimer’s

According to the World Health Organization, around 55 million people worldwide suffer from dementia. Although there’s currently no cure, researchers are unabatedly looking for ...

Read More