Today’s Solutions: December 05, 2021

The possibilities of 3D printing seem to have no bound after scientists at the University of Minnesota managed to 3D print a human heart pump capable of beating on its own.

The pump is just 1.5 centimeters long, but the researchers believe the tiny organoid could have a huge impact on efforts to treat heart disease, the leading cause of death in the US. To create their heart pump, the UMN researchers started with human pluripotent stem cells, which are capable of developing into any kind of cell in the human body.

They added those cells to a bioink, then used a special 3D printer to shape their tiny organoid. That process took less than five minutes, according to their paper, published in the journal Circulation Research. (Though the research, of course, had taken years.)

Next, they waited two weeks for the stem cells to multiply. Once the cells reached the perfect density, the researchers prompted them to evolve into heart muscle cells. Less than a month later, the researchers’ heart pump was functioning.

“I couldn’t believe it when we looked at the dish in the lab and saw the whole thing contracting spontaneously and synchronously and able to move fluid,” lead researcher Brenda Ogle, head of UMN’s Department of Biomedical Engineering The key to their breakthrough, according to Ogle, was waiting until after printing to turn the cells into heart muscles — in previous attempts, they had developed the stem cells into heart cells before printing, and they never multiplied to the right density.

“After years of research, we were ready to give up and then two of my biomedical engineering Ph.D. students, Molly Kupfer and Wei-Han Lin, suggested we try printing the stem cells first,” she said. “We decided to give it one last try.”

The heart pump is nowhere near as complex as a fully developed human heart — it’s essentially two tubes leading into and out of a dual-chambered sac — but that’s enough to make it useful for research. “We now have a model to track and trace what is happening at the cell and molecular level in (a) pump structure that begins to approximate the human heart,” Ogle said. “We can introduce disease and damage to the model and then study the effects of medicines and other therapeutics.”

Solutions News Source Print this article
More of Today's Solutions

Rwanda’s mountain gorillas represent a successful conservation story

Following years of poaching and habitat destruction, the population of mountain gorillas in Rwanda once numbered under 260 individuals. Now, Rwandan gorillas represent a rare conservation success and a key economic engine for the East ... Read More

Germany plans to put 15 million electric vehicles on its roads by 2030

Making electric cars the dominant vehicles on the road is key to curbing planet-warming emissions and protecting the climate. In a bid to reach that goal, an increasing number of countries and cities across the ... Read More

Here are 5 Indigenous-led eco-charities you can support today

The climate crisis has caused us to reconsider our consumerist lifestyles and turn to Indigenous peoples to learn from their superior understanding of living in harmony with nature. Here is a list of five organizations ... Read More

Scientists discover a peculiar new planet

Deep into the Hercules constellation, 855 light-years away from Earth, lies a record breaking exoplanet. This newly discovered gas giant was named TOI-2109b, and the thing that makes it so special is the fact it ... Read More

High altitude experiment shows that snow monkeys are excellent at fishing

Snow monkeys, also known as the Japanese macaque, are native to many of the main islands of Japan. These fluffy creatures are the most northern-based non-human primate out there, meaning they have some cold temperatures ... Read More