Today’s Solutions: May 07, 2024

Mazes are commonly used in psychology to assess the behavior of rats and mice. As scientists create more and more human-like robot brains, they thought it was time for the machines to have a turn.

Robot vs. maze

Teams from the Eindhoven University of Technology and the Max Planck Institute for Polymer Research, paired up to find the interesting answer to this query. They designed an algorithm for the robot so it made directional decisions like it had a human brain, utilizing machine learning neural networks. Every time the robot was to make a correct turn, a certain amount of electricity was put through the machine. This idea is modeled from biological synapses, which are strengthened each time information transmits through them.

The AI robot is made from the LEGO Mindstorms EV3 robot kit. The team equipped it with two wheels, traditional guidance software, plus touch and reflectance sensors. It was then deployed in a two meter by two meter honeycomb shaped maze. The robot was let loose in the structure, navigating around until it was able to escape.

Who came out on top?

“In the end, it took our robot 16 runs to find the exit successfully,” says Imke Krauhausen, a Ph.D. student working on the project. “And, what’s more, once it has learned to navigate this specific route, it can navigate any other path that it is given in one go. So the knowledge it has acquired is generalizable.”

A key feature that drove the robot’s success was its combination of programmed sense and movement. This idea was modeled again from nature where they strengthened memory and learning, reinforcing one another.

Why is this important?

This new study, published in Science Advances, paves the way for exciting new applications of neural networks. These include areas in medicine, energy conservation, data storage, e-commerce, security, and loan applications, just to name a few.

A growing issue in this field is energy output. These neural systems take a large amount of energy to be trained and operate, new innovative ideas are being invented to combat this such as modeling processing systems from astrocytes, a type of star-shaped brain cell. When this issue is overcome, the power and application of these networks will be incredible.

Another groundbreaking front of this research was the organic polymers the scientists constructed the robot out of, in order for the joint sense-memory feature to work. It has huge applications in the future of neural networking, plus in biomedical applications. Surprisingly this material may be able to be integrated with actual nerve cells, allowing amputees to regain feeling in bionic hands.

Source study: Science AdvancesOrganic neuromorphic electronics for sensorimotor integration and learning in robotics

Solutions News Source Print this article
More of Today's Solutions

It’s kitten season! How to help overwhelmed shelters manage the influx of kit...

Kitten season has arrived, bringing with it an irresistible wave of feline cuteness. However, behind the scenes, animal rescues and shelters are dealing with ...

Read More

How to cut down on your food waste

Cutting down on food waste helps the environment in a number of important ways. Most obviously, it saves the resources and energy that go ...

Read More

How to keep an eye on your eye health

As we age, we can become more vulnerable to developing age-related eye conditions, diseases, and vision loss. The best way to stave off, or ...

Read More

CRISPR-Cas9 may be able to solve obesity

Cases of obesity have been steadily increasing worldwide, especially during the pandemic. Lack of physical activity through more office-based jobs, plus a lack of ...

Read More