Today’s Solutions: April 17, 2024

While fundamental to everything our body does, the complex networks created by neurons in the brain are still not completely understood by scientists. However, getting a good grasp of how these networks are creating by neural signals is key to treating problems such as epilepsy, depression, and chronic pain — all conditions that arise when neurons fail to properly send and receive signals.

In a bid to shed more light on these neural processes in the brain, researchers at the University of Arizona have developed a wireless light delivery tool designed to increase our understanding of how the brain works.

The new tool uses optogenetics — a technique that involves shining light at specific neurons in the brain to excite or suppress activity. Essentially, optogenetics experiments aim to provide scientists with the knowledge that would enable them to develop and test potential cures for illnesses such as neurodegenerative disease.

Current optogenetics experiments, conducted on animals, involve introducing a light-sensitive protein, which attaches to specific neurons in the brain. The scientists then use a small device — resembling a tiny, high-tech flashlight — to send pulses of light to only these neurons and modulate their activity.

The novel device, however, uses optogenetics “without having to penetrate the skull or brain tissue, making it much less invasive,” explains study author Jokubas Ausra. The new technique involves an untethered optogenetic simulation tool that can send light through the skull rather than physically penetrating the blood-brain barrier. The battery-free device is as thin as a sheet of paper and about half the diameter of a dime and is implanted just under the skin.

“This is significant because when optogenetics becomes available for humans, we have technology that enables seamless light delivery to neurons in the brain or spine,” says Philipp Gutruf, another researcher behind the study. “This means we have a precursor technology that could someday help manage conditions like epilepsy or chronic pain without invasive surgery and chronic use of drugs.”

Study source: PNASWireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics

Solutions News Source Print this article
More of Today's Solutions

The story “pedal”-er: how an ice-cream cart library is changing lives in Karachi

Mohammad Noman bikes carefully and purposefully through the labyrinthine lanes of Karachi's Lyari Town, among the rush and bustle of everyday life. Though his ...

Read More

Scientists astonished to find 700 new species in Cambodia’s mysterious ...

Embark on a journey to discover the hidden riches concealed beneath Cambodia's mangrove forests, where nature thrives against the backdrop of endangered landscapes. A ...

Read More

4 simple ways to feel at your absolute best this summer

The sunshine of summer is enough to make you feel better than you usually do throughout the year. But with a few changes to ...

Read More

Indians recently planted 250 million trees—while socially distancing

India is committed to keeping a third of its total land area under forest and tree cover. In recent years the country has mobilized ...

Read More