Today’s Solutions: February 14, 2025

While fundamental to everything our body does, the complex networks created by neurons in the brain are still not completely understood by scientists. However, getting a good grasp of how these networks are creating by neural signals is key to treating problems such as epilepsy, depression, and chronic pain — all conditions that arise when neurons fail to properly send and receive signals.

In a bid to shed more light on these neural processes in the brain, researchers at the University of Arizona have developed a wireless light delivery tool designed to increase our understanding of how the brain works.

The new tool uses optogenetics — a technique that involves shining light at specific neurons in the brain to excite or suppress activity. Essentially, optogenetics experiments aim to provide scientists with the knowledge that would enable them to develop and test potential cures for illnesses such as neurodegenerative disease.

Current optogenetics experiments, conducted on animals, involve introducing a light-sensitive protein, which attaches to specific neurons in the brain. The scientists then use a small device — resembling a tiny, high-tech flashlight — to send pulses of light to only these neurons and modulate their activity.

The novel device, however, uses optogenetics “without having to penetrate the skull or brain tissue, making it much less invasive,” explains study author Jokubas Ausra. The new technique involves an untethered optogenetic simulation tool that can send light through the skull rather than physically penetrating the blood-brain barrier. The battery-free device is as thin as a sheet of paper and about half the diameter of a dime and is implanted just under the skin.

“This is significant because when optogenetics becomes available for humans, we have technology that enables seamless light delivery to neurons in the brain or spine,” says Philipp Gutruf, another researcher behind the study. “This means we have a precursor technology that could someday help manage conditions like epilepsy or chronic pain without invasive surgery and chronic use of drugs.”

Study source: PNASWireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics

Solutions News Source Print this article
More of Today's Solutions

This Canadian didn’t want to fly from Germany to Canada—so he took a cargo ship

When Will Vibert’s European work visa was closing in on its expiration date, the Canadian was reluctant to travel back to Vancouver via plane. ...

Read More

The psychological reason we’re so taken with Wordle

If you use any kind of social media platform, you may notice the sudden appearance of gray, green, and yellow boxes in grids cluttering ...

Read More

Hunger stones, dino tracks, and lost cities; discoveries exposed by drought

The severe droughts that are plaguing many parts of the world are altering life as we know it. Even though the climate crisis and ...

Read More

3 healthy habits to boost your immunity this cold and flu season

A mild headache that just won't go away, a box of tissues by the bed, and sleeping uncomfortably with your mouth wide open... It's ...

Read More