Today’s Solutions: May 05, 2024

Scientists are always working tirelessly to figure out new, effective treatments for complex neurological conditions. Here at The Optimist Daily, we’ve reported on many before, such as non-invasive brain surgery for people with epilepsy and using brain signals to allow a man with paralysis to speak. This time, we are reporting on a breakthrough in Parkinson’s disease treatment.

What causes Parkinson’s disease?

The disease comes about due to the destruction of dopaminergic neurons, aka, neurons that communicate with each other using dopamine. This hormone is not only involved in feelings of pleasure but also transmits off signals to muscles and controls their movement. This is why people with Parkinson’s disease experience tremors, involuntary muscle contractions, and balance problems.

Parkinson’s disease comes about by a complex interaction between the environment and genetics, apart from a few rare cases where a single gene triggers the onset. This makes it difficult to treat and find the source of the problem. What we do know is the disease has something to do with mitochondria, the powerhouse of our cells. Here is where all energy for our body is made and also the decision of whether or not to activate a cell’s self-destruct mechanism. Problems with mitochondria function can lead to some unpleasant outcomes.

How do you treat Parkinson’s?

A research group from the University of Geneva has been trying to pinpoint genes that trigger Parkinson’s for years. In their previous work, they identified the Fer2 gene in fruit flies, which when mutated causes Parkinson’s-like symptoms.

When the amount of Fer2 decreased, the flies experienced physical tremors, and defects in the shape of dopaminergic neurons and mitochondria. The team wanted to see what would happen if you increased the amount of Fer2, hoping it would have the opposite effect.

Their hunch turned out to be correct, and the flies showed improved resilience to Parkinson’s disease, even after their cells were put under pressure to trigger it. The results were published recently in Nature Communications.

“We have also identified the genes regulated by Fer2 and these are mainly involved in mitochondrial functions. This key protein, therefore, seems to play a crucial role against the degeneration of dopaminergic neurons in flies by controlling not only the structure of mitochondria but also their functions,” explains Federico Miozzo in a press release.

The group is next testing their idea out on mammals, to see if increasing the expression of the Fer2 gene is likely to work in humans. If they get positive results in mice, it could lead to a new therapy for Parkinson’s disease.

Source study: Nature CommunicationsMaintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor

Solutions News Source Print this article
More of Today's Solutions

You can now take Yale’s most popular class online for free

What is the most popular class at one of the world’s most prestigious schools? At Yale, the most popular course on campus is not ...

Read More

Listen to this fascinating piece of ambient music composed by stars

Though we can’t hear them, stars propagate some incredibly soothing soundscapes through the vacuum of space. And for the first time, music composed from ...

Read More

Did you know that volunteering is good for your health?

Volunteering is a great way to have a positive impact while connecting to your community, but did you know that volunteering is actually good ...

Read More

White House and 11 East Coast states partner to bolster offshore wind power

On Thursday, the White House announced that it will partner with 11 East Coast states to bolster offshore wind energy.  This arrangement, called the ...

Read More