Today’s Solutions: May 02, 2024

Drug-resistant pathogens have been a growing concern in this world for the past few decades. Thankfully, scientists are coming up with innovative solutions to find ways around these pathogens’ sneaky behavior. Examples of these are the production of these game-changing synthetic antibiotics or the clever bioengineering of bacteriophages (viruses that infect viruses).

A research team from the University of Melbourne in Australia has recently added another weapon to the arsenal against drug-resistant microorganisms, identifying the antimalarial compound ML901 which specifically targets the malaria parasite without harming mammalian cells.

ML901 works by an unusual hijacking mechanism, where the compound convinces the malaria parasite to self-destruct. Co-lead author Leann Tilley explains: “Imagine a stealth weapon that can be used to launch a self-destruct attack on your vehicle – slamming on the brakes and cutting the engine. ML901 finds a particular chink in the machinery that the malaria parasite uses to generate the proteins needed to reproduce itself and stops it from doing so.”

Multiple global labs have been involved in testing the compound using both human and animal blood. They found that malaria that is resistant to currently used drugs, showed rapid and prolonged killing when met with ML901 in all samples. Plus, the new drug showed efficient action in each stage of the parasite’s life cycle, meaning it shows potential for preventing infections and transmission as well as treating the disease.

As the efficacy of current antimalarial drugs decreases with time, this treatment could offer a much-needed alternative for the hundreds of millions of people infected with malaria each year. “While there is much work to be done to fine-tune what we’ve discovered, these results are really encouraging in the search for new antimalarials,” said Tilley.

The group hopes this is just the beginning of their work in the development of new antimalarial drug candidates. “We believe this is just the beginning. We now have the possibility of finding drugs, similar to ML901, that target a range of deadly infectious diseases, including multi-drug resistant bacterial infections. The work opens up several new drug discovery avenues,” added Tilley.

Source study: ScienceReaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy

Solutions News Source Print this article
More of Today's Solutions

Making windows bird-friendly: a crash course on protecting our feathered friends

In 1990, Michael Mesure was on the way to a wildlife rehabilitation center. Among his passengers was a common yellowthroat, a colorful warbler that ...

Read More

Good old-fashioned printed text outshines screens for cognitive engagement in...

In today's digital landscape, the draw of screens is clear, especially among the youngest members of society. But, what does this switch-up mean for children's ...

Read More

6 feng shui tips to help you rediscover your creativity

Not all of us have jobs or passions that fall into a classically "creative" category, but you don't need to be a writer, singer, ...

Read More

New nasal spray treatment could help prevent Alzheimer’s

According to the World Health Organization, around 55 million people worldwide suffer from dementia. Although there’s currently no cure, researchers are unabatedly looking for ...

Read More