Today’s Solutions: February 08, 2023

Alopecia can be extremely disheartening and drastically alter someone’s confidence and self-image. The condition affects men and women, and scientists are looking into different treatments and possible cures for the different forms of alopecia. 

Researchers have identified a molecule that determines whether or not hair regrows. This molecule is called SCUBE3, and it could lead to new treatments for alopecia

Discovery and regrowth 

It is well known that dermal papilla cells at the bottom of each hair follicle are responsible for the continued regrowth of hair. However, the genetic reason for how these cells are activated was a mystery. That was until researchers from the University of California, Irvine discovered the SCUBE3 molecule. 

“At different times during the hair follicle life cycle, the very same dermal papilla cells can send signals that either keep follicles dormant or trigger new hair growth,” says corresponding author Maksim Plikus, a professor of developmental and cell biology.

“We revealed that the SCUBE3 signaling molecule, which dermal papilla cells produce naturally, is the messenger used to ‘tell’ the neighboring hair stem cells to start dividing, which heralds the onset of new hair growth.”

For people with androgenic alopecia, activating the dermal papilla cells is the key to solving their hair loss. These cells in alopecia patients are malfunctioning, but researchers believe that SCUBE3 is the key to reversing this process. Tests on mice proved them correct. Lab mice who had transplanted human scalp follicles were micro-injected with SCUBE3 and this induced new hair growth in the human and mice follicles on the mice.

This discovery bodes well for the future of alopecia treatment and possible new medications. 

“There is a strong need for new, effective hair loss medicines, and naturally occurring compounds that are normally used by the dermal papilla cells present ideal next-generation candidates for treatment,” Plikus says. “Our test in the human hair transplant model validates the preclinical potential of SCUBE3.”

Source Study: Developmental CellHedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state – ScienceDirect

Solutions News Source Print this article
More of Today's Solutions

How to host a more sustainable super bowl party

This year, the Arizona Super Bowl Host Committee in collaboration with NFL Green is working together to make this year’s Super Bowl as sustainable ...

Read More

Let’s embrace the Swedish winter tradition of “little Saturday”

In northern Sweden, where the winter season means up to 20 hours of darkness a day, staying positive during colder months is tough, but ...

Read More

$1 billion to be invested in cleaning up Great Lakes

The US Great Lakes are treasured and iconic wonders of North America's natural splendor. Countless families and individuals flock there for fun and thousands ...

Read More

Be intentional about respecting wildlife by keeping these 4 things in mind

This year, if you are striving to be more considerate of wildlife while on your summer travels and hikes, but still want to enjoy, ...

Read More